刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点是
和
,并且经过点
,抛物线
的顶点在坐标原点,焦点恰好是椭圆
的右顶点.
(Ⅰ)求椭圆
和抛物线
的标准方程;
(Ⅱ)已知点
为抛物线
内一个定点,过
作斜率分别为
的两条直线交抛物线
于点
,且
分别是
的中点,若
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2017-10-12 10:37:42
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.
同类题2
设椭圆
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆
上的任一点,
为圆
的任一条直径,求
的最大值.
同类题3
已知椭圆
:
的左、右焦点分别为
,
,过
的直线
与椭圆
交于
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若过点
作
轴的垂线
,则
轴上是否存在一点
,使得直线
与直线
的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程,若不存在,请说明理由.
同类题4
已知椭圆
的左焦点为
,离心率e=
,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
,直线OM与ON的斜率之积为
,问:是否存在定点
,使得
为定值?,若存在,求出
的坐标,若不存在,说明理由;
(Ⅲ)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长交椭圆于点
,证明:
.
同类题5
已知
,
分别是椭圆
:
的左、右焦点,
,
分别是椭圆
的左、右顶点,
,且
(其中
为坐标原点)的中点坐标为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知动直线
与椭圆
相交于
,
两点,已知点
,求证:
是定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
直线与椭圆的位置关系