刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆的离心率为,直线与相切于点.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,,与直线相交于(,,,均不重合).证明:为定值.
上一题 下一题 0.99难度 解答题 更新时间:2019-01-18 11:33:28

答案(点此获取答案解析)

同类题1

已知椭圆的左、右顶点的坐标分别为,离心率.
(1)求椭圆的方程;
(2)设椭圆的两焦点分别为,若直线与椭圆交于、两点,证明直线与直线的交点在直线上.

同类题2

已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程.

同类题3

已知椭圆C的左、右焦点坐标分别是 (,0), (,0),离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.

同类题4

平面直角坐标系中,已知椭圆的离心率为,且点在椭圆上.为椭圆上任意一点,线段的中点为,过点的直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)①求点的轨迹方程;
②求四边形面积的最大值.

同类题5

已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是________.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的离心率
  • 根据离心率求椭圆的标准方程
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)