刷题首页
题库
高中数学
题干
已知椭圆
(
)的离心率为
,点
在椭圆上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆的一条弦,斜率为
,
是
轴上的一点,
的重心为
,若直线
的斜率存在,记为
,问:
为何值时,
为定值?
上一题
下一题
0.99难度 解答题 更新时间:2018-04-21 01:04:45
答案(点此获取答案解析)
同类题1
椭圆
与
的中心在原点,焦点分别在
轴与
轴上,它们有相同的离心率
,并且
的短轴为
的长轴,
与
的四个焦点构成的四边形面积是
.
(1)求椭圆
与
的方程;
(2)设
是椭圆
上非顶点的动点,
与椭圆
长轴两个顶点
,
的连线
,
分别与椭圆
交于
,
点.
(i)求证:直线
,
斜率之积为常数;
(ii)直线
与直线
的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
同类题2
如图,椭圆
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)经过点
,且斜率为
的直线与椭圆
交于不同两点
(均异于点
),
问:直线
与
的斜率之和是否为定值?若是,求出此定值;若否,说明理由.
同类题3
设点
在以
,
为焦点的椭圆
上.
(1)求椭圆
的方程;
(2)经过
作直线
交
于两点
,交
轴于
,若
,
,且
,求
.
同类题4
(2018届天津市耀华中学高三上学期第三次月考)已知椭圆
的一个焦点在直线
上,且离心率
.
(1)求该椭圆的方程;
(2)若
与
是该椭圆上不同的两点,且线段
的中点
在直线
上,试证:
轴上存在定点
,对于所有满足条件的
与
,恒有
;
(3)在(2)的条件下,
能否为等腰直角三角形?并证明你的结论.
同类题5
已知椭圆
的右焦点
与抛物线
的焦点重合,且椭圆的离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题