刷题首页
题库
高中数学
题干
已知椭圆
,三点
中恰有二点在椭圆
上,且离心率为
。
(1)求椭圆
的方程;
(2)设
为椭圆
上任一点,
为椭圆
的左右顶点,
为
中点,求证:直线
与直线
它们的斜率之积为定值;
(3)若椭圆
的右焦点为
,过
的直线
与椭圆
交于
,求证:直线
与直线
斜率之和为定值。
上一题
下一题
0.99难度 解答题 更新时间:2018-04-19 11:29:18
答案(点此获取答案解析)
同类题1
已知动点
M
到定点
F
1
(-2,0)和
F
2
(2,0)的距离之和为
.
(1)求动点
M
的轨迹
C
的方程;
(2)设
N
(0,2),过点
P
(-1,-2)作直线
l
,交曲线
C
于不同于
N
的两点
A
,
B
,直线
NA
,
NB
的斜率分别为
k
1
,
k
2
,求
k
1
+
k
2
的值.
同类题2
如图“月亮图”是由曲线
与
构成,曲线
是以原点
为中点,
为焦点的椭圆的一部分,曲线
是以
为顶点,
为焦点的抛物线的一部分,
是两条曲线的一个交点.
(Ⅰ)求曲线
和
的方程;
(Ⅱ)过
作一条与
轴不垂直的直线,分别与曲线
依次交于
四点,若
为
的中点,
为
的中点,问:
是否为定值?若是求出该定值;若不是说明理由.
同类题3
在平面直角坐标系中,直线
过点
且与直线
垂直,直线
与
轴交于点
,点
与点
关于
轴对称,动点
满足
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)过点
的直线
与轨迹
相交于
两点,设点
,直线
的斜率分别为
,问
是否为定值?若是,求出该定值;若不是,请说明理由.
同类题4
已知
、
分别是椭圆
的左、右焦点,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
、
两点,
为坐标原点,
轴上是否存在点
,使得
,若存在,求出
点的坐标;若不存在,请说明理由;
(3)设
为椭圆
上非长轴顶点的任意一点,
为线段
上一点,若
与
的内切圆面积相等,求证:线段
的长度为定值.
同类题5
已知椭圆
的离心率为
,左、右焦点分别为
、
,过
的直线交椭圆于
两点.
(1)若以
为直径的圆内切于圆
,求椭圆的长轴长;
(2)当
时,问在
轴上是否存在定点
,使得
为定值?并说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题