刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
为左焦点,过点
作
轴的垂线,交椭圆
于
两点,
.
(1)求椭圆
的方程;
(2)过圆
上任意一点作圆的切线交椭圆
于
两点,
为坐标原点,问:
是否为定值?若是,请求出定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-28 04:13:54
答案(点此获取答案解析)
同类题1
已知圆
,椭圆
(
)的短轴长等于圆
半径的
倍,
的离心率为
.
(1)求
的方程;
(2)若直线
与
交于
两点,且与圆
相切,证明:
为直角三角形.
同类题2
已知椭圆
的离心率为
,左、右焦点分别是
、
以
为圆心、以3为半径的圆与以
为圆心、以1为半径的圆相交,交点在椭圆
上.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,点
是椭圆
的右顶点
直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
同类题3
如图,在平面直角坐标系
中,已知椭圆
的右焦点为
,左、右顶点分别为
、
,上、下顶点分别为
、
,连结
并延长交椭圆于点
,连结
,
,记椭圆
的离心率为
.
(1)若
,
.
①求椭圆
的标准方程;
②求
和
的面积之比.
(2)若直线
和直线
的斜率之积为
,求
的值.
同类题4
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
同类题5
已知椭圆
:
的右焦点为
,离心率为
,
是椭圆
上位于第一象限内的任意一点,
为坐标原点,
关于
的对称点为
,
,圆
:
.
(1)求椭圆
和圆
的标准方程;
(2)过点
作
与圆
相切于点
,使得点
,点
在
的两侧.求四边形
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题