刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
为左焦点,过点
作
轴的垂线,交椭圆
于
两点,
.
(1)求椭圆
的方程;
(2)过圆
上任意一点作圆的切线交椭圆
于
两点,
为坐标原点,问:
是否为定值?若是,请求出定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-28 04:13:54
答案(点此获取答案解析)
同类题1
椭圆
:
的离心率为
,右顶点为
,下顶点为
,且
.
(1)求椭圆
的方程;
(2)若椭圆
与直线
相交于
,
两点,直线
,
分别与
轴交于
,
两点.试探究
,
两点的横坐标的乘积是否为定值,说明理由.
同类题2
椭圆
的离心率为
,则
的值为( )
A.-21
B.21
C.
或21
D.
或21
同类题3
已知椭圆
的离心率为
,且经过点
.
求椭圆的标准方程;
过点
的动直线
交椭圆于另一点
,设
,过椭圆中心
作直线
的垂线交
于点
,求证:
为定值.
同类题4
已知椭圆
过点
,其离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的右顶点为
,直线
交
于两点
(异于点
),若
在
上,且
,
,证明直线
过定点.
同类题5
已知椭圆
的离心率为
,且点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
经过点
,且与椭圆
有两个交点
,
,是否存在直线
(其中
),使得
,
到
的距离
,
满足:
恒成立?若存在,求
的值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题