刷题首页
题库
高中数学
题干
(江苏省南京市2018届高三第三次模拟考试数学试题)如图,在平面直角坐标系
中,椭圆
经过点
,离心率为
. 已知过点
的直线
与椭圆
交于
两点.
(1)求椭圆
的方程;
(2)试问
轴上是否存在定点
,使得
为定值.若存在,求出点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-23 10:41:00
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的离心率
,且过点
.
(1)求椭圆
的方程;
(2)设过点
的直线与椭圆
交于
,
两点,当
是
中点时,求直线
方程.
同类题2
已知椭圆
的中心在原点,焦点在
轴上,
为椭圆
短轴的一个端点,
为椭圆
的右焦点,线段
的延长线与椭圆
相交于点
,且
.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相交于
,
两点,
为坐标原点,若直线
与
的斜率之积为
,求
的取值范围.
同类题3
已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
同类题4
已知椭圆
的离心率为
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.
证明:直线
的斜率成等差数列.
同类题5
已知椭圆:
的焦距为4,且过点
,则椭圆的方程为__________;
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围