刷题首页
题库
高中数学
题干
已知椭圆
,过点
且离心率为
.
(1)求椭圆
的方程;
(2)已知
是椭圆
的左右顶点,动点M满足
,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
上一题
下一题
0.99难度 解答题 更新时间:2014-05-14 08:38:23
答案(点此获取答案解析)
同类题1
已知椭圆
经过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设
分别为椭圆
的左、右焦点,不经过
的直线
与椭圆
交于两个不同的点
,如果直线
、
、
的斜率依次成等差数列,求焦点
到直线
的距离
的取值范围.
同类题2
已知椭圆
的方程为
,
在椭圆上,椭圆的左顶点为
,左、右焦点分别为
,
的面积是
的面积的
倍.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,
,连接
,
并延长交椭圆
于
,
,连接
,指出
与
之间的关系,并说明理由.
同类题3
已知椭圆
的离心率为
,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知不经过
点的直线
与椭圆
交于
两点,
关于原点的对称点为
(与点
不重合),直线
与
轴分别交于两点
,证明:
.
同类题4
已知
是椭圆
:
的左焦点,
O
为坐标原点,
为椭圆上的点.
(1)求椭圆
的标准方程;
(2)若点
都在椭圆
上,且
中点
在线段
(不包括端点)上,求
面积的最大值,及此时直线
的方程.
同类题5
已知椭圆
的中心在坐标原点,焦点在
轴上,离心率为
,过椭圆
上一点
,作
轴的垂线,垂足为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,且
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题