刷题首页
题库
高中数学
题干
已知椭圆
的右焦点与抛物线
的焦点重合,且椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆
的右顶点,过
点作两条直线分别与椭圆
交于另一点
,若直线
的斜率之积为
,求证:直线
恒过一个定点,并求出这个定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-05 05:41:23
答案(点此获取答案解析)
同类题1
设椭圆
过点
,离心率为
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
,证明:点
的轨迹与
无关.
同类题2
已知椭圆
与双曲线
有相同的焦点
、
,点
是
与
的一个公共点,
是一个以
为底的等腰三角形,
,
的离心率是
,则
的离心率是( )
A.
B.
C.
D.
同类题3
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
同类题4
已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
同类题5
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题