刷题首页
题库
高中数学
题干
已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
上一题
下一题
0.99难度 解答题 更新时间:2012-07-25 09:39:08
答案(点此获取答案解析)
同类题1
已知椭圆
:
的右焦点为
,离心率为
,
是椭圆
上位于第一象限内的任意一点,
为坐标原点,
关于
的对称点为
,
,圆
:
.
(1)求椭圆
和圆
的标准方程;
(2)过点
作
与圆
相切于点
,使得点
,点
在
的两侧.求四边形
面积的最大值.
同类题2
已知椭圆C:
的离心率为
,
,
分别为椭圆C的左、右焦点,点
满足
.
求椭圆C的方程;
直线l经过椭圆C的右焦点与椭圆相交于M,N两点,设O为坐标原点,直线OM,直线l,直线ON的斜分别为
,k,
,且
,k,
成等比数列,求
的值.
同类题3
已如椭圆
E
:
(
)的离心率为
,点
在
E
上.
(1)求
E
的方程:
(2)斜率不为0的直线
l
经过点
,且与
E
交于
P
,
Q
两点,试问:是否存在定点
C
,使得
?若存在,求
C
的坐标:若不存在,请说明理由
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线
相切.
(1)求
与
;
(2)设该椭圆的左、右焦点分别为
和
,直线
过
且与
轴垂直,动直线
与
轴垂直,
交
与点
.求线段
垂直平分线与
的交点
的轨迹方程,并指明曲线类型.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题