刷题首页
题库
高中数学
题干
定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆
与椭圆
是相似的两个椭圆,并且相交于上下两个顶点,椭圆
的长轴长是4,椭圆
长轴长是2,点
,
分别是椭圆
的左焦点与右焦点.
(1)求椭圆
,
的方程;
(2)过
的直线交椭圆
于点
,
,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-26 03:29:02
答案(点此获取答案解析)
同类题1
椭圆
以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆
的方程及线段
的长;
(2)在
与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.
同类题2
已知椭圆
的离心率为
,下顶点为
,
为椭圆的左、右焦点,过右焦点的直线与椭圆交于
两点,且
的周长为
.
(I)求椭圆
的方程;
(II)经过点
的直线与椭圆
交于不同的两点
(均异于点
),试探求直线
与
的斜率之和是否为定值,证明你的结论.
同类题3
已知椭圆
:
的离心率为
,点
在椭圆
上,直线
过椭圆
的右焦点与上顶点,动直线
:
与椭圆
交于
,
两点,交
于
点.
(1)求椭圆
的方程;
(2)已知
为坐标原点,若点
满足
,求此时
的长度.
同类题4
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
同类题5
已知椭圆
的左焦点
,离心率为
,点
P
为椭圆
E
上任一点,且
的最大值为
.
(1)求椭圆
E
的方程;
(2)若直线
l
过椭圆的左焦点
,与椭圆交于
A
,
B
两点,且
的面积为
,求直线
l
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程