刷题首页
题库
高中数学
题干
如图,椭圆
:
的离心率是
,点
在短轴
上,且
(1)求椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
,
两点.是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-30 04:45:58
答案(点此获取答案解析)
同类题1
已知椭圆
(
)经过
与
两点.
(1)求椭圆
的方程;
(2)过原点的直线
与椭圆
交于
两点,椭圆
上一点
满足
,求证:
为定值.
同类题2
已知点
E
在椭圆
上,以
E
为圆心的圆与
x
轴相切于椭圆
C
的右焦点
,与
y
轴相交于
A
,
B
两点,且
是边长为2的正三角形.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)已知圆
,设圆
O
上任意一点
P
处的切线交椭圆
C
于
M
、
N
两点,试判断以
为直径的圆是否过定点?若过定点,求出该定点坐标,并直接写出
的值;若不过定点,请说明理由.
同类题3
已知椭圆
的左、右焦点分别为
点
,过点
且与
垂直的直线交
轴负半轴于点
,
(1)求证:
(2)若过
三点的圆与直线
相交于
两点,且
求
的方程;
(3)若
过
且不与坐标轴垂直的直线与
交于
两点,点
是点
关于
轴的对称点,在
轴上是否存在一个定点
,使得
三点共线?若存在,求出点
的坐标;若不存在,请说明理由.
同类题4
已知椭圆
的一个焦点
,两个焦点与短轴的一个端点构成等边三角形.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过焦点
作
轴的垂线交椭圆上半部分于点
,过点
作椭圆
的弦
,设弦
所在的直线分别交
轴于
、
两点,若
为等腰三角形时,问直线
的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题