刷题首页
题库
高中数学
题干
如图,椭圆
:
的离心率是
,点
在短轴
上,且
(1)求椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
,
两点.是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-30 04:45:58
答案(点此获取答案解析)
同类题1
已知中心在原点
,焦点在
轴上的椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆
交于不同的两点
,且
,求直线
的斜率
的取值范围;
同类题2
已知椭圆
的长轴长与焦距分别为方程
的两个实数根.
(1)求椭圆的标准方程;
(2)若直线
过点
且与椭圆相交于
,
两点,
是椭圆的左焦点,当
面积最大时,求直线
的斜率.
同类题3
已知椭圆
的焦点与双曲线
的焦点重合,过椭圆C的右顶点B任作一条直线
,交抛物线
于A,B两点,且
,
(1)试求椭圆C的方程;
(2)过椭圆
的右焦点且垂直于
轴的直线交椭圆
于
两点,M,N是椭圆
上位于直线
两侧的两点.若
,求证:直线MN的斜率
为定值.
同类题4
椭圆
经过点
,左、右焦点分别是
,
,
点在椭圆上,且满足
的
点只有两个.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
且不垂直于坐标轴的直线
交椭圆
于
,
两点,在
轴上是否存在一点
,使得
的角平分线是
轴?若存在求出
,若不存在,说明理由.
同类题5
已知椭圆
的焦点在
y
轴上,长轴长是短轴长的两倍,则
( )
A.
B.2
C.
D.4
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题