刷题首页
题库
高中数学
题干
已知抛物线
,过点
作一条直线
与抛物线
交于
两点,
(1) 证明:
为定值;
(2) 设点
是定直线
上的任意一点,分别记直线
,
,
的斜率为
,
,
.问:
,
,
能否组成一个等差数列?若能,说明理由;若不能,举出反例.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-13 02:42:37
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,椭圆
左右焦点分别为
,上项点为
,
为等边三角形.定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
的方程;
(2)求
的最大值;
(3)直线
交椭圆
于
、
两点,若点
、
的“伴随点”分别是
、
,且以
为直径的圆经过坐标原点
.椭圆
的右顶点为
,试探究
的面积与
的面积的大小关系,并证明.
同类题2
设
,
是双曲线
的两个焦点,
是双曲线与椭圆
的一个公共点,则
的面积等于______.
同类题3
已知椭圆
过点
且离心率为
.
(1)求椭圆C的方程;
(2)是否存在过点
的直线
与椭圆
C
相交于
A,B
两点,且满足
.若存在,求出直线
的方程;若不存在,请说明理由.
同类题4
已知双曲线
的右顶点为
,抛物线
的焦点为
.若在
的渐近线上存在点
,使得
,则
的离心率的取值范围是 ( )
A.
B.
C.
D.
同类题5
已知点
是椭圆
的右焦点,点
,
分别是
轴,
轴上的动点,且满足
.若点
满足
(
为坐标原点).
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
,
两点,直线
,
与直线
分别交于点
,
,试判断以线段
为直径的圆是否经过点
?请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆中的定值问题