刷题首页
题库
高中数学
题干
如图,点
为圆
:
上一动点,过点
分别作
轴,
轴的垂线,垂足分别为
,
,连接
延长至点
,使得
,点
的轨迹记为曲线
.
(1)求曲线
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,试问在曲线
上是否存在点
,使得四边形
为平行四边形,若存在,求出直线
方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-23 12:09:39
答案(点此获取答案解析)
同类题1
(Ⅰ)一动圆与圆
相外切,与圆
相内切求动圆圆心的轨迹曲线
的方程,并说明它是什么曲线;
(Ⅱ)过点
作一直线
与曲线
交与
两点,若
,求此时直线
的方程.
同类题2
已知定点
,
,定直线
:
,动点
与点
的距离是它到直线
的距离的
.设点
的轨迹为
,过点
的直线交
于
、
两点,直线
、
与直线
分别相交于
、
两点.
(1)求
的方程;
(2)以
为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.
同类题3
设
点为圆
上的动点,点
在
轴上的投影为
,动点
满足
,动点
的轨迹为
.
(Ⅰ)求
的方程;
(Ⅱ)设
的左顶点为
,若直线
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
同类题4
已知在
中,点
,点
,若
,则点
的轨迹方程为( )
A.
B.
C.
D.
同类题5
在平面直角坐标系
中,定点
和支点
,以线段
为直径的圆内切于圆
.
(Ⅰ)求动点
轨迹曲线
的方程;
(Ⅱ)若直线
与曲线
的一个公共点为
,与
(
为坐标原点)平行的直线
与曲线
将于不同的两点
,
,直线
与直线
交于点
,试判断是否存在常数
使
恒成立,若存在求出常数
的值,若不存在请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中存在定点满足某条件问题