刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆C的焦点为(,0),(,0),且椭圆C过点M(4,1),直线l:不过点M,且与椭圆交于不同的两点A,
A.
(1)求椭圆C的标准方程;
(2)求证:直线MA,MB与x轴总围成一个等腰三角形.
上一题 下一题 0.99难度 解答题 更新时间:2019-02-18 02:37:51

答案(点此获取答案解析)

同类题1

已知椭圆的左右焦点分别为F1,F2,离心率为,设过点F2的直线l被椭圆C截得的线段为MN,当l⊥x轴时,|MN|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点P,使得当l变化时,总有PM与PN所在的直线关于x轴对称?若存在,请求出点P的坐标;若不存在,请说明理由.

同类题2

已知椭圆:的短轴长为2,以椭圆的长轴为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)斜率为的直线交椭圆于,两点,且,若直线上存在点,使得是以为顶角的等腰直角三角形,求直线的方程.

同类题3

已知椭圆的中心在原点,焦点,在轴上,上的点到左焦点的距离的最大值为,过的直线交于,两点,且的周长为,则椭圆的方程为(   )
A.B.C.D.

同类题4

以双曲线的顶点为焦点,离心率为的椭圆的标准方程为(   )
A.B.C.D.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)