刷题宝
  • 刷题首页
题库 高中数学

题干

椭圆:的长轴长为4,离心率为.
(1)求椭圆的方程;
(2)若直线:交椭圆于,两点,点在椭圆上,且不与、两点重合,直线,的斜率分别为,.求证:,之积为定值.
上一题 下一题 0.99难度 解答题 更新时间:2019-04-17 08:40:43

答案(点此获取答案解析)

同类题1

12分)已知椭圆的长半轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线交椭圆于两点,若,求直线方程.

同类题2

已知椭圆的离心率为,以原点为圆心,椭圆的长轴为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知过点的动直线与椭圆的两个交点为,求的面积S的取值范围.

同类题3

椭圆C:+=1(a>b>0)的长轴长、短轴长和焦距成等差数列,若点P为椭圆C上的任意一点,且P在第一象限,O为坐标原点,F(3,0)为椭圆C的右焦点,则•的取值范围为(  )
A.B.C.D.

同类题4

设椭圆的中心是坐标原点,长轴在x轴上,离心率,已知点到椭圆的最远距离是,求椭圆的标准方程.

同类题5

已知两点,且是与的等差中项.则动点的轨迹方程是(   )
A.B.C.D.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 根据直线与椭圆的位置关系求参数或范围
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)