刷题首页
题库
高中数学
题干
椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的方程;
(2)若直线
:
交椭圆
于
,
两点,点
在椭圆
上,且不与
、
两点重合,直线
,
的斜率分别为
,
.求证:
,
之积为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-17 08:40:43
答案(点此获取答案解析)
同类题1
12分)已知椭圆
的长半轴长为
,且点
在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线
交椭圆于
两点,若
,求直线
方程.
同类题2
已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长轴为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知过点
的动直线与椭圆
的两个交点为
,求
的面积S的取值范围.
同类题3
椭圆
C
:
+
=1(
a
>
b
>0)的长轴长、短轴长和焦距成等差数列,若点
P
为椭圆
C
上的任意一点,且
P
在第一象限,
O
为坐标原点,
F
(3,0)为椭圆
C
的右焦点,则
•
的取值范围为( )
A.
B.
C.
D.
同类题4
设椭圆的中心是坐标原点,长轴在
x
轴上,离心率
,已知点
到椭圆的最远距离是
,求椭圆的标准方程.
同类题5
已知两点
,
且
是
与
的等差中项.则动点
的轨迹方程是( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围