刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
分别为椭圆
的左,右顶点,
为椭圆
的右焦点,过
的直线
与椭圆
交于不同的两点
,当直线
垂直于
轴时,四边形
的面积为
.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,线段
的垂直平分线与
轴交于点
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 09:41:10
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,
为椭圆
上一点.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
,
两点,直线
与直线
相交于点
,求证:直线
,
,
的斜率成等差数列.
同类题2
已知椭圆
(
)的离心率为
,短轴长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
交于不同的两点
,且线段
的垂直平分线过定点
,求实数
的取值范围.
同类题3
如图所示,椭圆
的右焦点为
F
,双曲线
的渐近线分别为
和
,过点
F
作直线
于点
C
,直线
l
与
交于点
P
、与椭圆
E
从上到下依次交于点
A
,
A.
已知直线
的倾斜角为
,双曲线的焦距为8.
(1)求椭圆
E
的方程;
(2)设
,证明:
为定值.
同类题4
已知椭圆
的中心在坐标原点,左右焦点分别为
和
,且椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过椭圆的右顶点
作两条相互垂直的直线
,
,分别与椭圆交于点
(均异于点
),求证:直线
过定点,并求出该定点的坐标.
同类题5
已知椭圆
的离心率为
,且椭圆上的点到焦点的最长距离为
.
(1)求椭圆
C
的方程;
(2)过点
P
(0,2)的直线
l
(不过原点
O
)与椭圆
C
交于两点
A
、
B
,
M
为线段
AB
的中点.
(ⅰ)证明:直线
OM
与
l
的斜率乘积为定值;
(ⅱ)求△
OAB
面积的最大值及此时
l
的斜率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
椭圆中的定值问题