刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 05:15:51
答案(点此获取答案解析)
同类题1
已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.
同类题2
设椭圆
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
且过椭圆右焦点
的直线
与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
.若存在,求出直线
的方程;若不存在,说明理由.
(3)若
是椭圆
经过原点
的弦,
,求证:
为定值
同类题3
已知椭圆
:
的离心率为
,且与抛物线
交于
,
两点,
(
为坐标原点)的面积为
.
(1)求椭圆
的方程;
(2)如图,点
为椭圆上一动点(非长轴端点)
,
为左、右焦点,
的延长线与椭圆交于
点,
的延长线与椭圆交于
点,求
面积的最大值.
同类题4
椭圆
(
)的左、右焦点分别为
,
在椭圆上,
的周长为
,面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,连接
,
并延长交椭圆
于
,连接
,探索
与
的斜率之比是否为定值并说明理由.
同类题5
已知椭圆
左右焦点为
,左顶点为
A
(-2.0),上顶点为
B
,且∠
=
.
(1)求椭圆C的方程;
(2)探究
轴上是否存在一定点
P
,过点
P
的任意直线与椭圆交于
M
、
N
不同的两点,
M
、
N
不与点
A
重合,使得
为定值,若存在,求出点P;若不存在,说明理由.
相关知识点
平面解析几何
平面解析几何
圆锥曲线
圆锥曲线
椭圆
椭圆