刷题首页
题库
高中数学
题干
已知
,
分别是椭圆
:
(
)的左、右焦点,
是椭圆
上的一点,且
,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆
交于不同两点
,
,椭圆
上存在点
,使得以
,
为邻边的四边形
为平行四边形(
为坐标原点).
(ⅰ)求实数
与
的关系;
(ⅱ)证明:四边形
的面积为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-04 09:05:31
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题2
已知椭圆
C
:
的离心率为
,且过点
.
Ⅰ
求椭圆
C
的方程;
Ⅱ
若
是椭圆
C
上的两个动点,且使
的角平分线总垂直于
x
轴,试判断直线
PQ
的斜率是否为定值?若是,求出该值;若不是,说明理由.
同类题3
已知椭圆
E
:
的离心率
e
=
,左、右焦点分别为
,点
P
,点
在线段
的中垂线上.
(1)求椭圆
E
的方程;
(2)设
l
1
,
l
2
是过点
G
(
,0)且互相垂直的两条直线,
l
1
交
E
于
A
,
B
两点,
l
2
交
E
于
C
,
D
两点,求
l
1
的斜率
k
的取值范围;
(3)在(2)的条件下,设
AB
,
CD
的中点分别为
M
,
N
,试问直线
MN
是否恒过定点?若经过,求出该定点坐标;若不经过,请说明理由.
同类题4
已知椭圆
的右焦点为
,离心率
.
(1)求椭圆
的方程;
(2)若过点
作直线与椭圆
相交于两点
,设
为椭圆
上动点,且满足
(
为坐标原点).当
时,求
面积
的取值范围.
同类题5
已知F
1
,F
2
分别为椭圆C:
的左焦点.右焦点,椭圆上的点与F
1
的最大距离等于4,离心率等于
,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F
2
MN;
(1)求椭圆的标准方程
(2)求圆E半径的最大值
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中三角形(四边形)的面积