刷题首页
题库
高中数学
题干
已知椭圆E:
,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
若
,点K在椭圆E上,
、
分别为椭圆的两个焦点,求
的范围;
证明:直线OM的斜率与l的斜率的乘积为定值;
若l过点
,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-15 08:54:21
答案(点此获取答案解析)
同类题1
如图,直线
与抛物线
相交于
两点,
是抛物线
的焦点,若抛物线
上存在点
,使点
恰为
的重心.
(1)求
的取值范围;
(2)求
面积的最大值.
同类题2
设
,双曲线
与圆
相切,
(
,
),
(
,
),若圆
上存在一点
满足
,则点
到
轴的距离为( )
A.
B.
C.
D.
同类题3
如图,四棱椎F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=
.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(Ⅰ) 求二面角B-AF-D的大小;
(Ⅱ) 求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
同类题4
已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
同类题5
已知椭圆
的左焦点为
,离心率
,
是椭圆上的动点.
(1)求椭圆标准方程;
(2)设动点
P
满足:
直线
与
的斜率之积为
,问:是否存在定点
为定值?若存在,求出
的坐标,若不存在,说明理由.
(3)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长交椭圆于点
,证明:
.
相关知识点
平面解析几何
圆锥曲线
根据椭圆的有界性求范围或最值
椭圆的中点弦