刷题首页
题库
高中数学
题干
设椭圆
:
的左、右焦点分别为
,过
的直线交椭圆于
两点,若椭圆
的离心率为
,
的周长为16.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设不经过椭圆的中心而平行于弦
的直线交椭圆
于点
,设弦
的中点分别为
.证明:
三点共线.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-28 10:55:56
答案(点此获取答案解析)
同类题1
已知椭圆
:
的一个焦点为
,点
在
上.
(1)求椭圆
的方程;
(2)若直线
:
与椭圆
相交于
,
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,说明理由.
同类题2
已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x
2
+y
2
=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
同类题3
已知点
,
是圆
上的一个动点,
为圆心,线段
的垂直平分线与直线
的交点为
.
(1)求点
的轨迹
的方程;
(2)设
与
轴的正半轴交于点
,直线
与
交于
两点(
不经过
点),且
,
证明:直线
经过定点,并写出该定点的坐标.
同类题4
椭圆
的左、右焦点分别为
,
为
上的动点,点
在线段
的延长线上,且
,则
到
轴距离的最大值为
__________
.
相关知识点
平面解析几何
圆锥曲线
椭圆的中点弦