刷题首页
题库
高中数学
题干
已知椭圆
和抛物线
有公共焦点
F
(1,0),
的中心和
的顶点都在坐标原点,过点
M
(4,0)的直线
与抛物线
分别相交于
A
,
B
两点.
(Ⅰ)写出抛物线
的标准方程;
(Ⅱ)若
,求直线
的方程;
(Ⅲ)若坐标原点
关于直线
的对称点
在抛物线
上,直线
与椭圆
有公共点,求椭圆
的长轴长的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-12 12:09:49
答案(点此获取答案解析)
同类题1
已知三点
,
,
,曲线
上任意一点
满足
.
(1)求
的方程;
(2)动点
在曲线
上,
是曲线
在
处的切线.问:是否存在定点
使得
与
都相交,交点分别为
,且
与
的面积之比为常数?若存在,求
的值;若不存在,说明理由.
同类题2
已知抛物线
:
的焦点为
,抛物线
与直线
交于两点
(
为坐标原点),且
.
(1)求抛物线
的方程.
(2)不过原点的直线
与
垂直,且与抛物线交于不同的两点
、
,若坐标原点
在以线段
为直径的圆上,求
的面积.
同类题3
设圆
的圆心为
,直线
过点
且与
轴不重合,直线
交圆
于
,
两点,过点
作
的平行线交
于点
.
(1)证明
为定值,并写出点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
交
于
,
两点,过点
且与直线
垂直的直线与圆
交于
,
两点,求四边形
面积的取值范围.
同类题4
已知椭圆
过点
,椭圆
左右焦点分别为
,上项点为
,
为等边三角形.定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
的方程;
(2)求
的最大值;
(3)直线
交椭圆
于
、
两点,若点
、
的“伴随点”分别是
、
,且以
为直径的圆经过坐标原点
.椭圆
的右顶点为
,试探究
的面积与
的面积的大小关系,并证明.
相关知识点
平面解析几何
圆锥曲线
根据焦点或准线写出抛物线的标准方程