刷题首页
题库
高中数学
题干
设抛物线
的焦点为
,直线
与抛物线
交于不同的两点
,
,线段
中点
的横坐标为2,且
.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)若真线
(斜率存在)经过焦点
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-06 10:46:13
答案(点此获取答案解析)
同类题1
如图所示己知抛物线
的焦点为
,准线为
,过点
的直线交抛物线
于
,
两点.且
.
(1)求抛物线方程;
(2)若点
在准线
上的投影为
,
是
上一点,且
,求
面积的最小值及此时直线
的方程.
同类题2
已知抛物线
C
的顶点在原点,对称轴是
y
轴,直线
与抛物线
交于不同的两点
、
,线段
中点
的纵坐标为2,且
.
(1)求抛物线
的标准方程;
(2)设抛物线的焦点为
,若直线
经过焦点
,求直线
的方程.
同类题3
已知焦点为
的抛物线
:
过点
,且
.
(1)求
;(2)过点
作抛物线
的切线
,交
轴于点
,求
的面积.
同类题4
已知抛物线
的顶点在原点,焦点在
轴正半轴上,点
到其准线的距离等于
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)如图,过抛物线
的焦点的直线从左到右依次与抛物线
及圆
交于
、
、
、
四点,试证明
为定值.
(Ⅲ)过
、
分别作抛物
的切线
、
,且
、
交于点
,求
与
面积之和的最小值.
同类题5
如图,
是抛物线
的焦点,过点
且与坐标轴不垂直的直线交抛物线于
、
两点,交抛物线的准线于点
,其中
,
.过点
作
轴的垂线交抛物线于点
,直线
交抛物线于点
.
(1)求
的值;
(2)求四边形
的面积
的最小值.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
利用焦半径公式解决直线与抛物线交点问题