刷题首页
题库
高中数学
题干
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-01 10:46:41
答案(点此获取答案解析)
同类题1
阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆
的对称轴,焦点在
轴上,且椭圆
的离心率为
,面积为
,则椭圆
的方程为( )
A.
B.
C.
D.
同类题2
已知椭圆
C
:
的左焦点为
F
(﹣1,0),离心率为
,过点
F
的直线
l
与椭圆
C
交于
A
、
B
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)设过点
F
不与坐标轴垂直的直线交椭圆
C
于
A
、
B
两点,线段
AB
的垂直平分线与
x
轴交于点
G
,求点
G
横坐标的取值范围.
同类题3
椭圆
焦点在
轴上,离心率为
,上焦点到上顶点距离为
.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交与
两点,
为坐标原点,
的面积
,则
是否为定值,若是求出定值;若不是,说明理由.
同类题4
已知椭圆
的右焦点
与抛物线
的焦点重合,且椭圆的离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
同类题5
已知椭圆
的离心率为
,
为椭圆的左右焦点,
;
分别为椭圆的长轴和短轴的端点(如图) .若四边形
的面积为
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)抛物线
的焦点与椭圆
的右焦点重合,过点
任意作一条直线
,交抛物线
于
两点. 证明:以
为直径的所有圆是否过抛物线
上一定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求直线与椭圆的交点坐标