刷题首页
题库
高中数学
题干
已知椭圆C:
的一个顶点为
,离心率
,直线
交椭圆于
M
,
N
两点,如果△
BMN
的重心恰好为椭圆的左焦点
F
,则直线
方程为___________
上一题
下一题
0.99难度 填空题 更新时间:2020-03-01 12:16:05
答案(点此获取答案解析)
同类题1
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
同类题2
过点
且和双曲线
有相同的焦点的椭圆方程为____________。
同类题3
已知椭圆
的左、右焦点分别为
,长轴长为4,且过点
.
(1)求椭圆
C
的方程;
(2)过
的直线
l
交椭圆
C
于
两点,过
A
作
x
轴的垂线交椭圆
C
与另一点
Q
(
Q
不与
重合).设
的外心为
G
,求证
为定值.
同类题4
已知椭圆
的左、右焦点为
,左右两顶点
,点
为椭圆
上任意一点,满足直线
的斜率之积为
,且
的最大值为4.
(1)求椭圆
的标准方程;
(2)已知直线
与
轴的交点为
,过
点的直线
与椭圆
相交与
两点,连接点
并延长,交轨迹
于一点
.求证:
.
同类题5
已知椭圆
的右焦点为
,过
作
轴的垂线交椭圆
于点
(点
在
轴上方),斜率为
的直线交椭圆
于
,
两点,过点
作直线
交椭圆
于点
,且
,直线
交
轴于点
.
(1)设椭圆
的离心率为
,当点
为椭圆
的右顶点时,
的坐标为
,求
的值.
(2)若椭圆
的方程为
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程