刷题首页
题库
高中数学
题干
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-25 08:40:07
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,
为椭圆的左、右焦点,过右焦点
的直线与椭圆交于
两点,且
的周长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点A是第一象限内椭圆上一点,且在
轴上的正投影为右焦点
,过点
作直线
分别交椭圆于
两点,当直线
的倾斜角互补时,试问:直线
的斜率是否为定值;若是,请求出其定值;否则,请说明理由.
同类题2
在平面
中,已知椭圆过点
,
且离心率
.
(1)求椭圆
C
的方程;
(2)直线
l
方程为
,直线
l
与椭圆
C
交于
A
,
B
两点,求
面积的最大值.
同类题3
经过两点
、
的椭圆的标准方程为__________.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题