刷题首页
题库
高中数学
题干
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-25 08:40:07
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
,长轴长为4,且过点
.
(1)求椭圆
C
的方程;
(2)过
的直线
l
交椭圆
C
于
两点,过
A
作
x
轴的垂线交椭圆
C
与另一点
Q
(
Q
不与
重合).设
的外心为
G
,求证
为定值.
同类题2
已知椭圆
经过点
,
,点
为椭圆
的右顶点,直线
与椭圆相交于不同于点
的两个点
、
.
(1)求椭圆
的标准方程;
(2)当
时,求
面积的最大值;
(3)若
,求证:
为定值.
同类题3
已知椭圆
的焦点在
轴上,短轴长为2,离心率为
.
(1)求椭圆
的标准方程;
(2)直线
:
与椭圆
相交于
,
两点,且弦
中点横坐标为1,求
值.
同类题4
已知椭圆
,
为坐标原点,
为椭圆上任意一点,
,
分别为椭圆的左、右焦点,且
,
,
依次成等比数列,其离心率为
.过点
的动直线
与椭圆相交于
、
两点.
(1)求椭圆
的标准方程;
(2)当
时,求直线
的方程;
(3)在平面直角坐标系
中,若存在与点
不同的点
,使得
成立,求点
的坐标.
同类题5
已知椭圆E:
(a>b>0)过点(0,
),其左焦点
与点P(1,
)的连线与圆
相切.
(1)求椭圆
E
的方程;
(2)设Q为椭圆
E
上的一个动点,试判断以Q
为直径的圆与圆
的位置关系,并证明.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题