刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,且过点
.
(1)求
的方程;
(2)是否存在直线
与
相交于
两点,且满足:①
与
(
为坐标原点)的斜率之和为2;②直线
与圆
相切,若存在,求出
的方程;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-27 01:49:41
答案(点此获取答案解析)
同类题1
已知椭圆
的焦距为2,过点
.
(1)求椭圆
的标准方程;
(2)设椭圆的右焦点为
F
,定点
,过点
F
且斜率不为零的直线
l
与椭圆交于
A
,
B
两点,以线段
AP
为直径的圆与直线
的另一个交点为
Q
,证明:直线
BQ
恒过一定点,并求出该定点的坐标.
同类题2
已知椭圆
的长轴长为4,且短轴长是长轴长的一半.
(1)求椭圆的方程;
(2)经过点
作直线
,交椭圆于
,
两点.如果
恰好是线段
的中点,求直线
的方程.
同类题3
已知椭圆
的左焦点在抛物线
的准线上,且椭圆的短轴长为2,
分别为椭圆的左,右焦点,
分别为椭圆的左,右顶点,设点
在第一象限,且
轴,连接
交椭圆于点
,直线
的斜率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若三角形
的面积等于四边形
的面积,求
的值;
(Ⅲ)设点
为
的中点,射线
(
为原点)与椭圆交于点
,满足
,求
的值.
同类题4
如图所示,在平面直角坐标系
中,已知椭圆
:
(
),
,
,
,
是椭圆上的四个动点,且
,
,线段
与
交于椭圆
内一点
.当点
的坐标为
,且
,
分别为椭圆
的上顶点和右顶点重合时,四边形
的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:当点
,
,
,
在椭圆上运动时,
(
)是定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围