刷题首页
题库
初中数学
题干
如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A
1
、B
1
、C
1
、D
1
,使AA
1
=BB
1
=CC
1
=DD
1
=
a,在边A
1
B
1
、B
1
C
1
、C
1
D
1
、D
1
A
1
上分别取点A
2
、B
2
、C
2
、D
2
,使A
1
A
2
=B
1
B
2
=C
1
C
2
=D
1
D
2
=
A
1
B
2
,….依次规律继续下去,则正方形A
n
B
n
C
n
D
n
的面积为
.
上一题
下一题
0.99难度 填空题 更新时间:2015-09-06 03:54:16
答案(点此获取答案解析)
同类题1
如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG=
_____
.
同类题2
如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是
.
同类题3
如图,在矩形ABCD中
,
E.F分别是边AD.BC的中点,点G、H在DC边上,且GH=DC.若AB=15,BC=16,则图中阴影部分面积是()
A.40 B.60 C.80 D.70
同类题4
已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
同类题5
(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定求面积