刷题首页
题库
初中数学
题干
(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;
(3)在(2)中,若BD=2,DC=3,求AD的长.
上一题
下一题
0.99难度 解答题 更新时间:2015-09-28 05:21:01
答案(点此获取答案解析)
同类题1
如图,在
中,
,
于
,将
沿
折叠为
,将
沿
折叠为
,延长
和
相交于点
.
(1)求证:四边形
为正方形;
(2)若
,
,求
的长.
同类题2
如图,正方形
ABCD
的边长为4,
E
为
BC
上一点,且
BE
=1,
F
为
AB
边上的一个动点,连接
EF
,以
EF
为边向右侧作等边△
EFG
,连接
CG
,则
CG
的最小值为__.
同类题3
如图,在正方形ABCD中,AB=4,点E在对角线AC上,连接BE、DE,
(1)如图1,作EM⊥AB交AB于点M,当AE=
时,求BE的长;
(2)如图2,作EG⊥BE交CD于点G,求证:BE=EG;
(3)如图3,作EF⊥BC交BC于点F,设BF=x,△BEF的面积为y.当x取何值时,y取得最大值,最大值是多少?当△BEF的面积取得最大值时,在直线EF取点P,连接BP、PC,使得∠BPC=45°,求EP的长度.
同类题4
已知动点P在边长为1的正方形ABCD的内部,点P到边AD、AB的距离分别为m、n.
(1)以A为原点,以边AB所在直线为x轴,建立平面直角坐标系,如图①所示,当点P在对角线AC上,且m=
时,求点P的坐标;
(2)如图②,当m、n满足什么条件时,点P在△DAB的内部?请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定求线段长