刷题首页
题库
初中数学
题干
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接C
A.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-11 09:20:15
答案(点此获取答案解析)
同类题1
已知ABCD为平行四边形纸片,要想用它剪成一个菱形,小刚说只要过BD中点作BD的垂线交AD、BC于E、F,沿BE、DF剪去两个角,所得的四边形BFDE为菱形.你认为小刚的方法对吗?为什么?
同类题2
如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,
A.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE最大值和最小值.
同类题3
如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()
A.0
B.1
C.2
D.3
同类题4
下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
同类题5
已知:如图,平行四边形 ABCD的两条对角线相交于点O, E是BO的中点.过B点作AC的平行线,交CE的延长线于点F,连接BF.
(1)求证:FB=AO;
(2)当平行四边形 ABCD满足什么条件时,四边形AFBO是菱形?说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
菱形的判定
证明已知四边形是菱形