刷题首页
题库
初中数学
题干
如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE,其中正确的个数是()
A.1
B.2
C.3
D.4
上一题
下一题
0.99难度 单选题 更新时间:2016-09-13 04:31:39
答案(点此获取答案解析)
同类题1
如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,D
A.
(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
同类题2
如图,在矩形
ABCD
中,
E
、
F
、
G
、
H
分别是四条边的中点.试判断四边形
EFGH
的形状,并证明你的结论.
同类题3
下列命题正确的是()
A.对角线互相垂直的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
同类题4
如图,在四边形ABCD中,AD∥BC,AD=2BC, E为AD的中点,连接BD,BE,∠ABD=90°
(1)求证:四边形BCDE为菱形.
(2)连接AC,若AC⊥BE, BC=2,求BD的长.
同类题5
已知:线段
求作:菱形
,使得
且
.
以下是小丁同学的作法:
①作线段
;
②分别以点
,
为圆心,线段
的长为半径作弧,两弧交于点
;
③再分别以点
,
为圆心,线段
的长为半径作弧,两弧交于点
;
④连接
,
,
.
则四边形
即为所求作的菱形.(如图)
老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.
相关知识点
图形的性质
四边形
特殊的平行四边形
菱形的判定
证明已知四边形是菱形