刷题首页
题库
初中数学
题干
下列说法正确的是( )
A.有
个角是直角的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.一组对边平行,另一组对边相等的四边形是平行四边形
D.两条对角线互相垂直且相等的四边形是正方形
上一题
下一题
0.99难度 单选题 更新时间:2018-10-15 09:00:38
答案(点此获取答案解析)
同类题1
(1)画图-连线-写依据:
先分别完成以下
画图
(不要求尺规作图),再与判断四边形
DEMN
形状的相应结论
连线
,并写出判定依据(只将
最后一步判定特殊平行四边形的依据
填在横线上).
①如图1,在矩形
ABEN
中,
D
为对角线的交点,过点
N
画直线
NP
∥
DE
,过点
E
画直线
EQ
∥
DN
,
NP
与
EQ
的交点为点
M
,得到四边形
DEMN
;
②如图2,在菱形
ABFG
中,顺次连接四边
AB
,
BF
,
FG
,
GA
的中点
D
,
E
,
M
,
N
,得到四边形
DEMN
.
(2)请从图1、图2的结论中选择一个进行证明.
证明:
同类题2
如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.
(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.
同类题3
如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BE=1,直接写出菱形AECF的边长.
同类题4
在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.(提示:过点B作BM∥AD交EG的延长线于点M,证明EG//AB且EG=
AB)
相关知识点
图形的性质
四边形
特殊的平行四边形
菱形的判定
证明已知四边形是菱形
求证四边形是正方形