刷题首页
题库
初中数学
题干
如图①,正方形ABCD,点E,F分别在AB,CD上,DG⊥EF于点 H.
(1)求证:DG=EF;
(2)在图①的基础上连接AH,如图②,若 AH=AD,试确定DF与 CG的数量关系,并说明理由;
(3)在(2)的条件下,作∠FEK=45°,点 K在 BC边上,如图③,若AE=KG=2,求EK的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-08 02:38:05
答案(点此获取答案解析)
同类题1
(1)如图矩形
的对角线
、
交于点
,过点
作
,且
,连接
,判断四边形
的形状并说明理由.
(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.
(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.
同类题2
如图,四边形
为矩形,四边形
为菱形.
求证:
;
试探究:当矩形
边长满足什么关系时,菱形
为正方形?请说明理由.
同类题3
如图,正方形ABCD中,AB=
,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,C
A.
(1)求证:AE=CF;
(2)若A,E,O三点共线,连接OF,求线段OF的长.
(3)求线段OF长的最小值.
同类题4
(探索发现)
如图①,将
沿中位线
折叠,使点
的对应点
落在
边上,再将
分别沿直线
和直线
折叠,使得
、
的对应点恰好落在点
处,折叠后的三个三角形拼合形成一个四边形
,请判断四边形
的形状.小刚在探索这个问题时发现四边形
是矩形,并展示了如下的证明方法:
证明:∵
是
的中位线,
∴
,
,
由折叠性质可知
,
,
,
,
∴______,
,
∴
,
∴四边形
是平行四边形.
∵______,
∴四边形
是矩形.
(1)请补全小刚的证明过程;
(2)连接
,当
时,直接写出线段
、
、
之间的数量关系:______;
(理解运用)
(3)如图②,在四边形
中,
,
,
,
,
,点
为
边的中点,把四边形
折叠成如图2所示的正方形
,顶点
、
落在点
处,顶点
、
落在线段
上的点
处,求
的长;
(拓展迁移)
如图③,在四边形
中,
,
,
,
,
,沿直线
折叠四边形
,使得点
与点
重合,点
落在
边的点
处,点
为
上一点,再沿直线
折叠四边形
,此时点
与点
恰好重合,得到新的四边形
.
(4)判断四边形
的形状,并说明理由.
同类题5
如图,正方形ABCD中,AB=4,点E是BA延长线上一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有( )个
①MC⊥ND;②sin∠MFC=
;③(BM+DG)²=AM²+AG²;④S
△
HMF
=
A.1
B.2
C.3
D.4
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明