刷题首页
题库
初中数学
题干
如图:正方形ABCD中,以AB为边,在正方形内作等边△ABE,△ABE周长为15,点P为对角线AC上一动点,则PD+PE最小值为____.
上一题
下一题
0.99难度 填空题 更新时间:2019-03-09 10:39:07
答案(点此获取答案解析)
同类题1
(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;
(3)在(2)中,若BD=2,DC=3,求AD的长.
同类题2
勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为( )
A.120
B.110
C.100
D.90
同类题3
如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=D
A.连接CF交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:
(1)求证:BE⊥AG;
(2)求线段DH的长度的最小值.
同类题4
(问题发现)
(1)如图(1)四边形
ABCD
中,若
AB
=
AD
,
CB
=
CD
,则线段
BD
,
AC
的位置关系为
;
(拓展探究)
(2)如图(2)在Rt△
ABC
中,点
F
为斜边
BC
的中点,分别以
AB
,
AC
为底边,在Rt△
ABC
外部作等腰三角形
ABD
和等腰三角形
ACE
,连接
FD
,
FE
,分别交
AB
,
AC
于点
M
,
N
.试猜想四边形
FMAN
的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形
ABCD
中,
AB
=2
,以点
A
为旋转中心将正方形
ABCD
旋转60°,得到正方形
AB
'
C
'
D
',请直接写出
BD
'平方的值.
同类题5
如图,正方形ABCD中,点E是DC边上一点,DE=6,EC=3,点F在直线AB上,当线段CF的长为________时,把线段AE绕点A旋转,使点E恰好落在点F处.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定求线段长