刷题首页
题库
初中数学
题干
如图1,AC是边长为6的菱形ABCD的对角线,∠ABC=∠PAQ=60°,∠PAQ绕点A旋转,射线AP、AQ分别交边BC、CD于点E、F,连接EF.请探究:
(1)在旋转过程中,线段AE、AF有怎样的数量关系?并说明理由;
(2)在旋转过程中,△AEF的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由
(3)如图2,将∠PAQ沿着AC向下平移至点A处,使CA′:AA′=2:1,在∠PA′Q绕点A′旋转过程中,始终保持∠ABC=∠PA′Q,射线A′P、A′Q分别交直线BC、CD于点E、F,连接EF.当S
△
A′EF
:S
菱形
ABCD
=19:18时,直接写出线段CE的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-10 08:53:36
答案(点此获取答案解析)
同类题1
定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形。
(1)如图1,将△ABC绕顶点B按顺时针方向旋转60∘得到△DBE,∠DCB=30∘,连接AD,DC,CE
①求证:△BCE是等边三角形;
②求证:四边形ABCD是勾股四边形。
(2)如图2已知等边∆
ABC
的边长等于4平面上存在一点P若使四边形PABC形成勾股四边形且PC=2,PA,PC不能同时成为一组勾股边,直接写出此时∆PBC的面积。
同类题2
如图,甲、乙两动点分别从正方形
ABCD
的顶点
A
、
C
同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的 3 倍,则它们第 2018 次相遇在边()上.
A.
CD
B.
AD
C.
AB
D.
BC
同类题3
下列命题中,属于真命题的是()
A.各边相等的多边形是正多边形
B.矩形的对角线互相垂直
C.三角形的中位线把三角形分成面积相等的两部分
D.对顶角相等
同类题4
如图,将边长为2的正六边形ABCDEF绕顶点A顺时针旋转60°,则旋转后所得图形与正六边形ABCDEF重叠部分的面积为
______
.
同类题5
如图,在直角坐标系中,点A、C分别在x轴、y轴上,CB∥OA,CB=8,OC=8,OA=16.
(1)直接写出点A、B、C的坐标;
(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分时停止运动,求P点运动时间;
(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
四边形其他综合问题