刷题首页
题库
初中数学
题干
如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,且AB=AE,过点A作AF⊥BE,垂足为F,交BD于点G,点H在AD上,且EH∥AF.若正方形ABCD的边长为2,下列结论:①OE=OG;②EH=BE;③AH=
,其中正确的有( )
A.0个
B.1个
C.2个
D.3个
上一题
下一题
0.99难度 单选题 更新时间:2019-05-06 06:34:02
答案(点此获取答案解析)
同类题1
如图,已知
,点
在
边的上方,把
绕点
逆时针方向旋转
得
,绕点
顺时针方向旋转
得
,连结
、
.
(1)写出图中所有的等边三角形;
(2)当
满足什么条件时,四边形
是正方形?请说明理由;
(3)当
满足什么条件时,以
、
、
、
为顶点的四边形不存在?请说明理由.
同类题2
如图,在正方形
ABCD
中,点
P
是
CD
边上一动点,连接
PA
,分别过点
B
、
D
作
BE
⊥
PA
、
DF
⊥
PA
,垂足分别为
E
、
F
,如图①.
(1)请探究
BE
、
DF
、
EF
这三条线段的长度具有怎样的数量关系?并说明理由.
(2)若点
P
在
DC
的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?直接写出结论.
(3)若点
P
在
CD
的延长线上呢,如图③,直接写出结论.
同类题3
如图,正方形ABCD中,E为BC的中点,CG⊥DE于G,BG延长交CD于点F,CG延长交BD于点H,交AB于N.下列结论:①DE=CN;②
;③S
△
DEC
=3S
△
BNH
;④∠BGN=45°;⑤
.其中正确结论的个数有( )
A.2个
B.3个
C.4个
D.5个
同类题4
(问题情境)
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
(探究展示)
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
(拓展延伸)
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.
同类题5
已知,正方形
,
是
延长线上一点,连接
、
,作
中
边上的高
,连接
.
(1)依题意补全图形;
(2)求证:
;
(3)猜想
、
、
之间的数量关系,并说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明