刷题首页
题库
初中数学
题干
某数学活动小组在研究三角形拓展图形的性质时,经历了如下过程:
●操作发现
在等腰△
ABC
中,
AB
=
AC
,分别以
AB
和
AC
为腰,向△
ABC
的外侧作等腰直角三角形,如图①所示,连接
DE
,其中
F
是
DE
的中点,连接
AF
,则下列结论正确的是
(填序号即可)
①
AF
=
BC
:②
AF
⊥
BC
;③整个图形是轴对称图形;④
DE
∥
BC
、
●数学思考
在任意△
ABC
中,分别以
AB
和
AC
为腰,向△
ABC
的外侧作等腰直角三角形,如图②所示,连接
DE
,其中
F
是
DE
的中点,连接
AF
,则
AF
和
BC
有怎样的数量和位置关系?请给出证明过程
●类比探索
在任意△
ABC
中,仍分别以
AB
和
AC
为腰,向△
ABC
的内侧作等腰直角三角形,如图③所示,连接
DE
,其中
F
是
DE
的中点,连接
AF
,试判断
AF
和
BC
的数量和位置关系是否发生改变?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-27 11:38:44
答案(点此获取答案解析)
同类题1
如图,正方形
ABCD
的边
CD
在正方形
ECGF
的边
CE
上,连接
DG
,过点
A
作
AH
∥
DG
,交
BG
于点
H
.连接
HF
,
AF
,其中
AF
交
EC
于点
M
.
(1)求证:△
AHF
为等腰直角三角形.
(2)若
AB
=3,
EC
=5,求
EM
的长.
同类题2
如图,
三个顶点的坐标分别为
,
,
.
(1)请画出
关于原点对称的
;
(2)四边形
为____________四边形;
(3)点
为平面内一点,若以点
、
、
、
为顶点的四边形为平行四边形,请直接写出所有满足条件的点
坐标.
同类题3
(1)已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M是BC的中点.求证:MD=ME.
(2)已知:如图,O是△ABC内任意一点,且满足∠1=∠2,OD⊥AC于D, OE⊥AB于E,M是BC的中点。仿照第⑴问的思路,结合三角形中位线定理,平行四边形的性质与判定,求证:MD=ME.
同类题4
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点
A.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
同类题5
如图,
BD
是▱
ABCD
的对角线,
AE
⊥
BD
,
CF
⊥
BD
,垂足分别为
E
,
F
,
AM
与
CN
分别是∠
BAE
与∠
DCF
的平分线,
AM
交
BE
于点
M
,
CN
交
DF
于点
N
,连接
AN
,
CM
.求证:四边形
AMCN
是平行四边形.
相关知识点
图形的性质
四边形
平行四边形
平行四边形的判定与性质综合
利用平行四边形性质和判定证明