刷题首页
题库
初中数学
题干
正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,PA=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB
2
+CE
2
=
AF
2
;⑤S
正方形
ABCD
+S
正方形
CGFE
=2S
△
APF
,其中正确的是( )
A.①②③
B.①③④
C.①②④⑤
D.①③④⑤
上一题
下一题
0.99难度 单选题 更新时间:2019-02-02 07:37:15
答案(点此获取答案解析)
同类题1
如图,∠
MON
=90°,点
A
、
B
分别在边
ON
和
OM
上(∠
OAB
≠45°).
(1)根据要求,利用尺规作图,补全图形:
第①步:作∠
MON
的平分线
OC
,作线段
AB
的垂直平分线
l
,
OC
和
l
交于点
P
,第②步:连接
PA
、
PB
;
(2)结合补完整的图形,判断
PA
和
PB
有什么数量关系和位置关系?并说明理由.
同类题2
我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;
结论2:B′D∥AC
…
(应用与探究)
在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)
同类题3
如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
同类题4
如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S
四边形
CDFE
=
S
△
ABC
.上述结论中始终正确的有______.(填序号)
同类题5
(1)如图1,在正方形
ABCD
中,
E
是
AB
上一点,
F
是
AD
延长线上一点,且
DF
=
BE
.求证:
CE
=
CF
;
(2)如图2,在正方形
ABCD
中,
E
是
AB
上一点,
G
是
AD
上一点,如果∠
GCE
=45°,请你利用(1)的结论证明:
GE
=
BE
+
GD
.
(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:
①如图3,在四边形
ABCD
中,
AD
∥
BC
(
BC
>
AD
),∠
B
=90°,
AB
=
BC
=12,
E
是
AB
上一点,且∠
DCE
=45°,
BE
=4,则
DE
=
.
②如图4,在△
ABC
中,∠
BAC
=45°,
AD
⊥
BC
,且
BD
=2,
AD
=6,求△
ABC
的面积.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明