刷题首页
题库
高中数学
题干
已知
为圆
上一动点,
在
轴,
轴上的射影分别为点
,
,动点
满足
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
,
两点,判断以
为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-19 02:46:35
答案(点此获取答案解析)
同类题1
已知定圆
,动圆
过点
且与圆
相切,记动圆圆
心
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)若点
为曲线
上任意一点,证明直线
与曲线
恒有且只有一个公共点.
同类题2
已知椭圆
过点
.
(Ⅰ)求椭圆
的方程,并求其离心率;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),直线
关于
的对称直线
与椭圆交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
同类题3
若直线
l
:
与抛物线
:
相切于点
,则以点
为圆心且与抛物线
的准线相切的圆的标准方程为_________________________.
同类题4
已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(I)求椭圆
的方程;
(II)设与圆
相切的直线
交椭圆
于
,
两点(
为坐标原点),
的最大值.
相关知识点
平面解析几何
圆锥曲线
轨迹问题——椭圆
直线与椭圆的位置关系