刷题首页
题库
高中数学
题干
已知椭圆
经过点
,
是
的一个焦点,过
点的动直线
交椭圆于
两点.
(1)求椭圆
的方程;
(2)是否存在定点
(异于点
),对任意的动直线
(斜率存在)都有
,若存在求出点
的坐标,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-19 09:44:16
答案(点此获取答案解析)
同类题1
已知椭圆
的一个焦点坐标为
,且长轴长是短轴长的
倍.
(1)求椭圆
C
的方程;
(2)
,
分别是椭圆
C
的左、右焦点,过
作倾斜角
的直线与椭圆交于
P
,
Q
两点,求
的面积.
同类题2
已知椭圆
的离心率为
,以椭圆的短轴为直径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆过右焦点
的弦为
、过原点的弦为
,若
,求证:
为定值.
同类题3
已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,点
在第一象限,且
,
.
(1)求椭圆的标准方程;
(2)设
、
为椭圆上不重合的两点且异于
、
,若
的平分线总是垂直于
轴,问是否存在实数
,使得
?若不存在,请说明理由;若存在,求
取得最大值时的
的长.
同类题4
已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题