刷题宝
  • 刷题首页
题库 高中数学

题干

设A,B分别是直线y=2x和y=﹣2x上的动点,满足|AB|=4,则A的中点M的轨迹方程为_____.
上一题 下一题 0.99难度 填空题 更新时间:2019-12-19 04:28:19

答案(点此获取答案解析)

同类题1

已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点. 设平面内曲线上的每一点绕原点沿逆时针方向旋转后得到点的轨迹是曲线,求原来曲线的方程.

同类题2

在平面直角坐标系中,有两定点,和两动点,且,直线与直线交于点,点的轨迹为曲线.
(1)求曲线的方程;
(2)若为曲线上的两点,且直线过原点,为曲线上另一点,满足,求证:为定值.

同类题3

已知复数z满足(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为(   )
A.双曲线的一支B.双曲线C.一条射线D.两条射线

同类题4

已知是圆上一动点,为圆所在平面内一定点(为圆的圆心),线段的垂直平分线与直线交于点,则点的轨迹可能是________.(写出所有正确结论的序号)①圆;②椭圆;③双曲线;④抛物线;⑤一个点;⑥直线.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 曲线与方程
  • 轨迹问题
  • 求平面轨迹方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)