刷题首页
题库
高中数学
题干
设
A
,
B
分别是直线
y
=2
x
和
y
=﹣2
x
上的动点,满足|
AB
|=4,则
A
的中点
M
的轨迹方程为_____.
上一题
下一题
0.99难度 填空题 更新时间:2019-12-19 04:28:19
答案(点此获取答案解析)
同类题1
已知点
,
,点
在圆
上,则使
的点
的个数为__________.
同类题2
已知两直线方程
与
,点
在
上运动,点
在
上运动,且线段
的长为定值
.
(Ⅰ)求线段
的中点
的轨迹方程;
(Ⅱ)设直线
与点
的轨迹相交于
,
两点,
为坐标原点,若
,求原点
的直线
的距离的取值范围.
同类题3
在直角坐标系
中,过点
的直线与抛物线
相交于
,
两点,弦
的中点
的轨迹记为
.
(1)求
的方程;
(2)已知直线
与
相交于
,
两点.
(i)求
的取值范围;
(ii)
轴上是否存在点
,使得当
变动时,总有
?说明理由.
同类题4
已知
是抛物线
上任意一点,
,且点
为线段
的中点.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)若
为点
关于原点
的对称点,过
的直线交曲线
于
、
两点,直线
交直线
于点
,求证:
.
同类题5
设常数
,已知复数
,
和
,其中
均为实数,
为虚数单位,且对于任意复数
,有
,将
作为点
的坐标,
作为点
的坐标,通过关系式
,可以看作是坐标平面上点的一个变换,它将平面上的点
变到这个平面上的点
.
(1)分别写出
和
用
表示的关系式;
(2)设
,当点
在圆
上移动时,求证:点
经该变换后得到的点
落在一个圆上,并求出该圆的方程;
(3)求证:对于任意的常数
,总存在曲线
,使得当点
在
上移动时,点
经这个变换后得到的点
的轨迹是二次函数
的图像,并写出对于正常数
,满足条件的曲线
的方程.
相关知识点
平面解析几何
圆锥曲线
曲线与方程
轨迹问题
求平面轨迹方程