刷题首页
题库
高中数学
题干
已知椭圆
C
:
的离心率为
,长半轴长为短轴长的
b
倍,
A
,
B
分别为椭圆
C
的上、下顶点,点
.
求椭圆
C
的方程;
若直线
MA
,
MB
与椭圆
C
的另一交点分别为
P
,
Q
,证明:直线
PQ
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-01 11:18:26
答案(点此获取答案解析)
同类题1
给定椭圆
C
:
(
),称圆心在原点
O
,半径为
的圆是椭圆
C
的“卫星圆”.若椭圆
C
的离心率
,点
在
C
上.
(1)求椭圆
C
的方程和其“卫星圆”方程;
(2)点
P
是椭圆
C
的“卫星圆”上的一个动点,过点
P
作直线
,
使得
,与椭圆
C
都只有一个交点,且
,
分别交其“卫星圆”于点
M
,
N
,证明:弦长
为定值.
同类题2
(1)若椭圆
的离心率
,则实数
的值为________________.
(2)如图,
是椭圆的长轴,点
在椭圆上,且
,若
则椭圆的两个焦点之间的距离为________________.
同类题3
已知椭圆
的短轴长等于
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
О
为坐标原点,过右焦点
F
的直线与椭圆
C
交于
A
、
B
两点(
A
、
B
不在
x
轴上),若
,求四边形
AOBE
面积
S
的最大值.
同类题4
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,直线
过其短轴的一个端点.
(1)求椭圆
的标准方程;
(2)若过点
的直线
与椭圆
在第一象限相切于点
,求直线
的方程和点
的坐标.
同类题5
已知椭圆
:
,短轴长为
,离心率为
,直线
与椭圆
交于不同的两点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
,且
的面积为
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题