刷题首页
题库
高中数学
题干
阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆
的对称轴,焦点在
轴上,且椭圆
的离心率为
,面积为
,则椭圆
的方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-25 05:40:30
答案(点此获取答案解析)
同类题1
已知椭圆
经过点
,离心率为
,直线
经过椭圆
的右焦点
交椭圆于
两点,点
在直线
上的射影依次为点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
交
轴于点
,且
,当直线
的倾斜角变化时,探求
的值是否为定值?若是,求出
的值,否则,说明理由;
(Ⅲ)连接
,试探索当直线
的倾斜角变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
同类题2
已知椭圆C:
(
)的离心率为
,
,
,
,
的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于
、
两点
,求直线
的方程;
(3)在
轴上是否存在一点
,使得过点
的任一直线与椭圆若有两个交点
、
则都有
为定值?若存在,求出点
的坐标及相应的定值.
同类题3
某隧道设计为双向四车道,车道总宽22米。要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个桶圆形状(如图)。
(1)若最大拱高
为6米,则隧道设计的拱宽
是多少米?
(2)若最大拱高
不小于6米,则应如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小,并求出最小土方量?(已知:椭圆
的面积公式为
,本题结果拱高
和拱宽
精确到0.01米,土方量精确到1米
3
)
同类题4
椭圆
(
)的左、右焦点分别为
,
在椭圆上,
的周长为
,面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,连接
,
并延长交椭圆
于
,连接
,探索
与
的斜率之比是否为定值并说明理由.
同类题5
已知点
,
分别是椭圆
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程