刷题首页
题库
高中数学
题干
阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆
的对称轴,焦点在
轴上,且椭圆
的离心率为
,面积为
,则椭圆
的方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-25 05:40:30
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于
,直线
l
与椭圆
C
交于
两点,其中直线
l
不过原点.
(1)求椭圆
C
的方程;
(2)设直线
的斜率分别为
,其中
且
.记
的面积为
S
.分别以
为直径的圆的面积依次为
,求
的最小值.
同类题2
已知椭圆
:
的右焦点
,且经过点
.
(1)求椭圆
的方程;
(2)点
是坐标原点,若直线
与椭圆
相切,过
作
,垂足为
,求证:
为定值.
同类题3
已知椭圆
的左、右焦点分别为
,离心率为
,直线
与椭圆
C
交于
A
,
B
两点,且
.
(1)求椭圆
C
的方程.
(2)不经过点
的直线
被圆
截得的弦长与椭圆
C
的长轴长相等,且直线
与椭圆
C
交于
D
,
E
两点,试判断
的周长是否为定值?若是,求出定值;若不是,请说明理由.
同类题4
已知中心为原点
O
,焦点在
x
轴上的椭圆
C
的离心率为
,且椭圆
C
的长轴是圆
的一条直径.
(1)求椭圆
C
的方程;
(2)若不过原点的直线
l
与椭圆
C
交于
A
,
B
两点,与圆
M
交于
P
、
Q
两点,且直线
OA
,
AB
,
OB
的斜率成等比数列,求
的取值范围.
同类题5
椭圆
的左、右焦点分别为
,过
的直线
与椭圆交于
两点,若
的倾斜角为
时,
是等边三角形.
(1)求椭圆的方程;
(2)若
,求
中
边上中线长的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程