刷题首页
题库
高中数学
题干
已知椭圆
的焦距为
,且过点
.
(1)求椭圆的方程;
(2)已知
,是否存在
使得点
关于
的对称点
(不同于点
)在椭圆
上?若存在求出此时直线
的方程,若不存在说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-30 10:16:22
答案(点此获取答案解析)
同类题1
(1)求与双曲线
有共同的渐近线,且经过点
的双曲线的标准方程;
(2)焦点在坐标轴上,且经过
A
(-
,2)和
B
(
,1)两点的椭圆的标准方程
同类题2
已知椭圆
与椭圆
有相同的焦点,且过点
.
(1)求椭圆
的标准方程;
⑵ 若
P
是椭圆
上一点且在x轴上方,
F
1
、
F
2
为椭圆
的左、右焦点,若
为直角三角形,求p点坐标。
同类题3
已知焦点在
轴上的椭圆
上的点到两个焦点的距离和为10,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
作与
轴垂直的直线
,直线
上存在
、
两点满足
,求△
面积的最小值;
(3)若与
轴不垂直的直线
交椭圆
于
、
两点,交
轴于定点
,线段
的垂直平分线交
轴于点
,且
为定值,求点
的坐标.
同类题4
已知以
为焦点的椭圆过点
.
(1)求椭圆方程.
(2)设椭圆的左顶点为
,线段
的垂直平分线
交椭圆于
两点,求
的面积.
同类题5
已知椭圆
抛物线
焦点均在
轴上,
的中心和
顶点均为原点
,从每条曲线上各取两个点,将其坐标记录于表中,则
的左焦点到
的准线之间的距离为 ( )
A.
;
B.
;
C.1;
D.2.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定直线