刷题首页
题库
高中数学
题干
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-04 08:42:02
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,点
在椭圆
上,直线
过椭圆
的右焦点与上顶点,动直线
:
与椭圆
交于
,
两点,交
于
点.
(1)求椭圆
的方程;
(2)已知
为坐标原点,若点
满足
,求此时
的长度.
同类题2
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
同类题3
已知椭圆
E
的中心在坐标原点,两个焦点分别为
,
,短半轴长为2.
(1)求椭圆
E
的标准方程;
(2)过焦点
的直线
l
交椭圆
E
于
A
,
B
两点,满足
,求直线
l
的方程.
同类题4
设椭圆
的左、右焦点分别为
,
,离心率为
,过点
的直线
交椭圆
于点
,
(不与左右顶点重合),连接
,已知
的周长为8.
(1)求椭圆
的方程;
(2)设
,若
,求直线
的方程.
同类题5
已知椭圆
的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题