刷题首页
题库
高中数学
题干
已知方向向量为
的直线
过点
和椭圆
的焦点,且椭圆
的中心关于直线
的对称点在椭圆
的右准线上.
(I)求椭圆
的方程;
(II)是否存在过点
的直线
交椭圆
于点
,满足
(
为原点).若存在,求直线
的方程;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2011-10-18 09:13:35
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
中,椭圆
C
过点
,焦点
,圆
O
的直径为
.
(1)求椭圆
C
及圆
O
的方程;
(2)设直线
l
与圆
O
相切于第一象限内的点
P
.
①若直线
l
与椭圆C有且只有一个公共点,求点
P
的坐标;
②直线
l
与椭圆
C
交于
两点.若
的面积为
,求直线
l
的方程.
同类题2
椭圆
的两个焦点
,
,设
,
分别是椭圆
的上、下顶点,且四边形
的面积为
,其内切圆周长为
.
(1)求椭圆
的方程;
(2)当
时,
,
为椭圆
上的动点,且
,试问:直线
是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.
同类题3
已知椭圆
右顶点与右焦点的距离为
,短轴长为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆分别交于
,
两点,求
的面积的最大值.
同类题4
已知椭圆
的上顶点与左、右焦点的连线构成面积为
的等边三角形.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过
的右焦点
作斜率为
的直线
与
交于
,
两点,直线
与
轴交于点
,
为线段
的中点,过点
作直线
于点
.证明:
,
,
三点共线.
同类题5
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆的方程;
(2)设直线
与椭圆相交于
,
两点,
,
分别为线段
,
的中点,若坐标原点
在以
为直径的圆上,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题