刷题首页
题库
高中数学
题干
给定椭圆
C
:
(
),称圆心在原点
O
,半径为
的圆是椭圆
C
的“卫星圆”.若椭圆
C
的离心率
,点
在
C
上.
(1)求椭圆
C
的方程和其“卫星圆”方程;
(2)点
P
是椭圆
C
的“卫星圆”上的一个动点,过点
P
作直线
,
使得
,与椭圆
C
都只有一个交点,且
,
分别交其“卫星圆”于点
M
,
N
,证明:弦长
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 12:03:06
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,且过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设直线
:
与椭圆
相交于
、
两点,且直线
,
,
的斜率依次成等比数列,求直线
的斜率.
同类题2
已知椭圆
的长轴长为
,离心率
,过右焦点
的直线
交椭圆于
、
两点.
(
)求椭圆的方程.
(
)当直线
的斜率为
时,求
的面积.
同类题3
已知椭圆
C
:
,(
a
>
b
>0)过点(1,
)且离心率为
.
(1)求椭圆
C
的方程;
(2)设椭圆
C
的右顶点为
P
,过定点(2,﹣1)的直线
l
:
y
=
kx
+
m
与椭圆
C
相交于异于点
P
的
A
,
B
两点,若直线
PA
,
PB
的斜率分别为
k
1
,
k
2
,求
k
1
+
k
2
的值.
同类题4
设椭圆
的上顶点为
A
,右顶点为
B
,离心率为
,
.
(1)求椭圆的方程;
(2)不经过点
A
的直线
与椭圆交于
M
、
N
两点,若以
MN
为直径的圆经过点
A
,求证:直线
过定点,并求出该定点的坐标.
同类题5
设椭圆
的离心率
,抛物线
的焦点恰好是椭圆
的右焦点
.
(1)求椭圆
的标准方程;
(2)过点
作两条斜率都存在的直线
,设
与椭圆
交于
两点,
与椭圆
交于
两点,若
是
与
的等比中项,求
的最小值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求椭圆的切线方程