刷题首页
题库
初中数学
题干
如图,已知
□ABCD
中,
AE
平分∠
BAD
,
CF
平分∠
BCD
,分别交
BC
、
AD
于
E
、
F
.求证:
AF
=
EC
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 01:48:31
答案(点此获取答案解析)
同类题1
如图,在平行四边形
ABCD
中,点
E
在边
BC
上,点
F
在边
AD
的延长线上,且
DF
=
BE
,求证:
BD
∥
EF
.
同类题2
已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.
求证:四边形BEDF是平行四边形.
同类题3
在一堂数学实践课上,赵老师给出了下列问题:
(提出问题)
(1)如图1,在△
ABC
中,
E
是
BC
的中点,
P
是
AE
的中点,就称
CP
是△
ABC
的“双中线”,∠
ACB
=90°,
AC
=3,
AB
=5.则
CP
=
.
(探究规律)
(2)在图2中,
E
是正方形
ABCD
一边上的中点,
P
是
BE
上的中点,则称
AP
是正方形
ABCD
的“双中线”,若
AB
=4.则
AP
的长为
(按图示辅助线求解);
(3)在图3中,
AP
是矩形
ABCD
的“双中线”,若
AB
=4,
BC
=6,请仿照(2)中的方法求出
AP
的长,并说明理由;
(拓展应用)
(4)在图4中,
AP
是平行四边形
ABCD
的“双中线”,若
AB
=4,
BC
=10,∠
BAD
=120°.求出△
ABP
的周长,并说明理由?
同类题4
如图,在△
ABC
中,点
D
,
E
,
F
分别是
AB
,
BC
,
AC
的中点,连接
DE
,
EF
,
DF
,则下列说法不正确的是( )
A.
S
△
DEF
=
S
△
ABC
B.△
DEF
≌△
FAD
≌△
EDB
≌△
CFE
C.四边形
ADEF
,四边形
DBEF
,四边形
DECF
都是平行四边形
D.四边形
ADEF
的周长=四边形
DBEF
的周长=四边形
DECF
的周长
同类题5
已知A、F、C、D四点在同一条直线上,AC=DF,AB//DE,EF//BC,
求证:(1)⊿ABC≌⊿DEF
(2)∠CBF=∠FEC
相关知识点
图形的性质
四边形
平行四边形
平行四边形的判定与性质综合
利用平行四边形性质和判定证明