刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
C
的标准方程.
(2)设直线
l
过点(2,0)且与椭圆
C
相交于不同的两点
A
、
B
,直线
与
x
轴交于点
D
,
E
是直线
上异于
D
的任意一点,当
时,直线
BE
是否恒过
x
轴上的定点?若过,求出定点坐标,若不过,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-30 02:36:40
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点分别为
,过
的直线
与过
的直线
交于点
,设
点的坐标
,若
,则下列结论中不正确的是( )
A.
B.
C.
D.
同类题2
已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦长为
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
交于
两点,且
,若存在,求直线
的方程;若不存在,说明理由.
同类题3
已知椭圆
的两个焦点分别为
,长轴长为
.
(Ⅰ)求椭圆
的标准方程及离心率;
(Ⅱ)过点
的直线
与椭圆
交于
,
两点,若点
满足
,求证:由点
构成的曲线
关于直线
对称.
同类题4
椭圆
C
:
+
=1(
a
>
b
>0)的长轴长、短轴长和焦距成等差数列,若点
P
为椭圆
C
上的任意一点,且
P
在第一象限,
O
为坐标原点,
F
(3,0)为椭圆
C
的右焦点,则
•
的取值范围为( )
A.
B.
C.
D.
同类题5
已知椭圆方程
为:
椭圆的右焦点为
,离心率为
,直线
与椭圆
相交于
,
两点,且
(1)椭圆的方程;
(2)求
的面积的最大值.
(3)若椭圆的右顶点为
,上顶点为
,经过原点的直线与椭圆交于
,
两点,该直线与直线
交于点
,且点
,
均在第四象限.若
的面积是
面积的
倍,求该直线方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题