刷题首页
题库
高中数学
题干
若椭圆
的焦点在
x
轴上,离心率为
,依次连接
的四个顶点所得四边形的面积为40.
(1)试求
的标准方程;
(2)若曲线
M
上任意一点到
的右焦点的距离与它到直线
的距离相等,直线
经过
的下顶点和右顶点,
,直线
与曲线
M
相交于点
P
、
Q
(点
P
在第一象限内,点
Q
在第四象限内),设
的下顶点是
B
,上顶点是
D
,且
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 04:47:42
答案(点此获取答案解析)
同类题1
已知椭圆
的一个顶点为
,半焦距为
,离心率
,又直线
交椭圆于
,
两点,且
为
中点.
(1)求椭圆
的标准方程;
(2)若
,求弦
的长;
(3)若点
恰好平分弦
,求实数
;
(4)若满足
,求实数
的取值范围并求
的值;
(5)设圆
与椭圆
相交于点
与点
,求
的最小值,并求此时圆
的方程;
(6)若直线
是圆
的切线,证明
的大小为定值.
同类题2
在平面直角坐标系
中,已知抛物线
的焦点F在直线
上.
(Ⅰ)求抛物线
C
的方程.
(Ⅱ)过点
做互相垂直的两条直线
与曲线
C
交于
A,B
两点,
与曲线
C
交于
E,F
两点,线段
AB、EF
的中点分别为
M、N
,求证:直线
MN
过定点
P
,并求出定点
P
的坐标.
同类题3
已知点
是抛物线
:
上一点,且
到
的焦点的距离为
.
(1)若直线
与
交于
,
两点,
为坐标原点,证明:
;
(2)若
是
上一动点,点
不在直线
:
上,过
作直线垂直于
轴且交
于点
,过
作
的垂线,垂足为
.试判断
与
中是否有一个为定值?若是,请指出哪一个为定值,并加以证明;若不是,请说明理由.
同类题4
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的长半轴长.
(1)求
,
的方程;
(2)设
与
轴的交点为M,过坐标原点O的直线
与
相交于点A,B,直线MA,MB分别与
相交与D,
A.
①证明:
;
②记△MAB,△MDE的面积分别是
.问:是否存在直线
,使得
=
?请说明理由.
同类题5
已知椭圆
的离心率为
,
,
分别是其左、右焦点,且过点
.
(1)求椭圆
的标准方程;
(2)求
的外接圆的方程.
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求椭圆标准方程
利用抛物线定义求动点轨迹