刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率
,左、右焦点分别是
、
,且椭圆上一动点
到
的最远距离为
,过
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的标准方程;
(2)当
以
为直角时,求直线
的方程;
(3)直线
的斜率存在且不为0时,试问
轴上是否存在一点
使得
,若存在,求出
点坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-18 09:27:30
答案(点此获取答案解析)
同类题1
椭圆的中心在原点,焦点在坐标轴上,焦距为2
.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.
同类题2
如图,已知椭圆
的离心率为
,
为椭圆
上的动点,
到点
的距离的最大值为
,直线
交椭圆于
,
两点.
(1)求椭圆
的方程;
(2)若以
为圆心的圆的半径为
,且圆
与
、
相切.
(i)是否存在常数
,使
恒成立?若存在,求出常数
;若不存在,说明理由;
(ii)求
的面积.
同类题3
已知双曲线
的左、右焦点分别为点
,抛物线
与双曲线在第一象限内相交于点P,若
,则双曲线的离心率为______.
同类题4
抛物线
的一条弦被
平分,那么这条弦所在的直线方程是__________.
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围